- Joined
- Oct 7, 2008
- Messages
- 61,301
- Location
- Bulgaria
[TABLE="class: wikitable"]
[TR]
[TH]Years from now
[/TH]
[TH]Event
[/TH]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]10,000[/TD]
[TD]The end of humanity, according to Brandon Carter's Doomsday argument, which assumes that half of the humans who will ever have lived have already been born.[SUP][3][/SUP][SUP]$[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]36,000[/TD]
[TD]Ross 248 passes between 3.024 light years of Earth, becoming the Sun's closest star.[SUP][4][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]42,000[/TD]
[TD]Alpha Centauri becomes the nearest star system to the Sun once more.[SUP][4][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]50,000[/TD]
[TD]According to the work of Burger and Loutre,[SUP][5][/SUP] at this time the current interglacial ends, sending the Earth back into an ice age, assuming limited effects of anthropogenic global warming. Niagara Falls erodes away the remaining 20 miles to Lake Erie and ceases to exist.[SUP][6][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]100,000[/TD]
[TD]The hypergiant star VY Canis Majoris will have likely exploded in a hypernova.[SUP][7][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]250,000[/TD]
[TD]Lo'ihi, the youngest volcano in the Hawaiian-Emperor seamount chain, will rise above the surface of the ocean and become a new volcanic island.[SUP][8][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]500,000[/TD]
[TD]By this time Earth will have likely been impacted by a meteorite of roughly 1 km in diameter.[SUP][9][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]1 million[/TD]
[TD]Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight.[SUP][10][/SUP][SUP][11][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]1.4 million[/TD]
[TD]Gliese 710 passes within 1.1 light years of the Sun, potentially disturbing the Solar System's Oort cloud and increasing the likelihood of a comet impact in the inner Solar System.[SUP][12][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]10 million[/TD]
[TD]The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa.[SUP][13][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]11 million[/TD]
[TD]The moon Phobos collides with the surface of Mars.[SUP][14][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]50 million[/TD]
[TD]The Californian coast begins to be subducted into the Aleutian Trench[SUP][15][/SUP] Africa will have collided with Eurasia, closing the Mediterranean Basin and creating a mountain range similar to the Himalayas.[SUP][16][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]100 million[/TD]
[TD]By this time, the Earth will have likely been impacted by a meteorite comparable in size to that which triggered the K–T extinction 65 million years ago.[SUP][17][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]~240 million[/TD]
[TD]From its present position, the Solar System will have completed one full orbit of the Galactic center.[SUP][18][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]250 million[/TD]
[TD]All the continents on Earth fuse into a possiblenewsupercontinent.[SUP][19][/SUP][SUP][20][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]600 million[/TD]
[TD]As weathering of Earth's surfaces increases with the Sun's luminosity, carbon dioxide levels in its atmosphere decrease. By this time, they will fall to the point at which C3 photosynthesis is no longer possible. All plants which utilise C3 photosynthesis (~99 percent of species) will die.[SUP][21][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]~800 million[/TD]
[TD]Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible. All plant species die. Free oxygen eventually disappears from the atmosphere.[SUP][21][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]1 billion[/TD]
[TD]The Sun's luminosity increases by 10%, causing Earth's surface temperatures to reach an average of 47°C and the oceans to boil away.[SUP][22][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]1.5 billion[/TD]
[TD]The Sun's circumstellar habitable zone moves outwards as its increased luminosity causes carbon dioxide to increase Mars's atmosphere, raising its surface temperatures to ice age Earth conditions.[SUP][23][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]3.3 billion[/TD]
[TD]1% chance that Mercury's orbit may become so elongated as to collide with Venus, sending the inner Solar System into chaos and potentially leading to a planetary collision with Earth.[SUP][24][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]3.5 billion[/TD]
[TD]Surface conditions on Earth are comparable to those on Venus today.[SUP][25][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]3.6 billion[/TD]
[TD]Neptune's moon Triton falls through the planet's Roche limit, potentially disintegrating into a new planetary ring system.[SUP][26][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]5.4 billion[/TD]
[TD]The Sun becomes a red giant.[SUP][27][/SUP]Mercury, Venus and possibly Earth are destroyed.[SUP][28][/SUP] During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[SUP][29][/SUP][SUP][30][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]7 billion[/TD]
[TD]Collision between the Milky Way and Andromedagalaxies.[SUP][31][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]7.4 billion[/TD]
[TD]Sun becomes a white dwarf[SUP][32][/SUP][SUP][33][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10 billion[/TD]
[TD]Estimated lifespan of a globular cluster before its stars are ejected by gravitational interactions.[SUP][34][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]20 billion[/TD]
[TD]The end of the Universe in the Big Rip scenario.[SUP][35][/SUP] Observations of galaxy cluster speeds by the Chandra X-Ray Observatory suggest that this will not occur.[SUP][36][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]50 billion[/TD]
[TD]Assuming both survive the Sun's expansion, by this time the Earth and the Moon become tidelocked, with each showing only one face to the other.[SUP][37][/SUP][SUP][38][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]100 billion[/TD]
[TD]The Universe's expansion causes all evidence of the Big Bang to disappear beyond the practical observational limit, rendering cosmology impossible.[SUP][39][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]450 billion[/TD]
[TD]Median point by which the Local Group, the collection of ~47 galaxies to which the Milky Way belongs,[SUP][40][/SUP] will coalesce into a single large galaxy.[SUP][41][/SUP] [SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]12[/SUP] (1 trillion)[/TD]
[TD]Low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[SUP][41][/SUP][SUP], §IID.[/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]2×10[SUP]12[/SUP] (2 trillion)[/TD]
[TD]All galaxies outside the Local Supercluster are no longer detectable in any way, assuming that dark energy continues to make the Universe expand at an accelerating rate.[SUP][42][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]13[/SUP] (10 trillion) to 2×10[SUP]13[/SUP] (20 trillion)[/TD]
[TD]Lifetime of the longest-lived stars, low-mass red dwarfs.[SUP][41][/SUP][SUP] §IIA.[/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]3 x 10[SUP]13[/SUP] (30 trillion)[/TD]
[TD]Estimated time for the white dwarf Sun to undergo a close encounter with another stellar remnant in the local Solar neighborhood. Whenever two objects pass close to each other, the orbits of their planets can be disrupted and the planets can be ejected from orbit around their parent objects. Planets with closer orbits take longer to be ejected in this manner on average because a passing object must make a closer pass to the planet's primary to eject the planet.[SUP][43][/SUP][SUP][41][/SUP][SUP], §IIIF, Table I.[/SUP] [SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]14[/SUP] (100 trillion)[/TD]
[TD]High estimate for the time until star formation ends in galaxies.[SUP][41][/SUP][SUP], §IID.[/SUP] This marks the transition from the Stelliferous Era to the Degenerate Era;[SUP][44][/SUP] once star formation ends and the least massive red dwarfs exhaust their fuel, the only stellar-mass objects remaining are stellar remnants (white dwarfs, neutron stars and black holes.) Brown dwarfs also remain.[SUP][41][/SUP][SUP] §IIE.[/SUP] [SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]15[/SUP] (1 quadrillion)[/TD]
[TD]Estimated time until stellar close encounters detach all planets in the Solar System from their orbits.[SUP][41][/SUP][SUP], §IIIF, Table I.[/SUP] By this time, the Sun will have cooled to five degrees above absolute zero.[SUP][45][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]19[/SUP] to 10[SUP]20[/SUP][/TD]
[TD]Estimated time until brown dwarfs and stellar remnants are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy with lower-mass objects tending to gain energy. The lower-mass objects can gain enough energy in this manner through repeated encounters to be ejected from the galaxy. This process causes the galaxy to eject the majority of its brown dwarfs and stellar remnants.[SUP][41][/SUP][SUP], §IIIA;[/SUP][SUP][46][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]20[/SUP][/TD]
[TD]Estimated time until the Earth's orbit around the Sun decays via emission of gravitational radiation,[SUP][47][/SUP] if the Earth is neither first engulfed by the red giant Sun a few billion years from now[SUP][48][/SUP][SUP][49][/SUP] nor ejected from its orbit by a stellar encounter before then.[SUP][47][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]32[/SUP][/TD]
[TD]The smallest possible value for proton half-life consistent with experiment.[SUP][50][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]3×10[SUP]34[/SUP][/TD]
[TD]The estimated time for all nucleons in the observable Universe to decay, if the proton half-life takes its smallest possible value.[SUP][51][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]41[/SUP][/TD]
[TD]The largest possible value for the proton half-life, assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early Universe makes protons decay.[SUP][41][/SUP][SUP], §IVA.[/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]3×10[SUP]43[/SUP][/TD]
[TD]Estimated time for all nucleons in the observable Universe to decay, if the proton half-life takes the largest possible value, 10[SUP]41[/SUP] years, consistent with the conditions given above.[SUP][51][/SUP] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, begins.[SUP][44][/SUP][SUP][41][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]65[/SUP][/TD]
[TD]Assuming that protons do not decay, estimated time for rigid objects like rocks to rearrange their atoms and molecules via quantum tunnelling. On this timescale all matter is liquid.[SUP][47][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]2×10[SUP]66[/SUP][/TD]
[TD]The estimated time until a black hole with the mass of the Sun decays by the Hawking process.[SUP][52][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]1.7×10[SUP]106[/SUP][/TD]
[TD]Estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[SUP][52][/SUP] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the Universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state.[SUP][44][/SUP][SUP][41][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]1500[/SUP][/TD]
[TD]Assuming protons do not decay, the estimated time until all matter decays to iron-56.[SUP][47][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]
[/TD]
[TD]Low estimate for the time until all matter collapses into black holes, assuming no proton decay.[SUP][47][/SUP] Subsequent Black Hole Era and transition to the Dark Era are, on this timescale, instantaneous.[SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]
[/TD]
[TD]Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[SUP][53][/SUP] [SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]
[/TD]
[TD]Estimated time for random quantum fluctuations to generate a new Big Bang, according to Caroll and Chen.[SUP][54][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]
[/TD]
[TD]High estimate for the time until all matter collapses into black holes, again assuming no proton decay.[SUP][47][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]
[/TD]
[TD]High estimate for the time for the Universe to reach its final energy state.[SUP][53][/SUP] [SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]
[/TD]
[TD]Scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing an isolated black hole of stellar mass.[SUP][55][/SUP] This time assumes a statistical model subject to Poincaré recurrence. A much simplified way of thinking about this time is that in a model in which history repeats itself arbitrarily many times due to properties of statistical mechanics, this is the time scale when it will first be somewhat similar (for a reasonable choice of "similar") to its current state again.[SUP]$[/SUP][/TD]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]
[/TD]
[TD]Scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing a black hole with the mass within the presently visible region of the Universe.[SUP][55][/SUP][SUP]$[/SUP][/TD]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]
[/TD]
[TD]Scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing a black hole with the estimated mass of the entire Universe, observable or not, assuming Linde's chaotic inflationary model with an inflaton whose mass is 10[SUP]−6[/SUP] Planck masses.[SUP][55][/SUP][SUP]$[/SUP][/TD]
[/TR]
[/TABLE]
http://en.wikipedia.org/wiki/Timeline_of_the_far_future
Ssf
[TR]
[TH]Years from now
[/TH]
[TH]Event
[/TH]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]10,000[/TD]
[TD]The end of humanity, according to Brandon Carter's Doomsday argument, which assumes that half of the humans who will ever have lived have already been born.[SUP][3][/SUP][SUP]$[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]36,000[/TD]
[TD]Ross 248 passes between 3.024 light years of Earth, becoming the Sun's closest star.[SUP][4][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]42,000[/TD]
[TD]Alpha Centauri becomes the nearest star system to the Sun once more.[SUP][4][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]50,000[/TD]
[TD]According to the work of Burger and Loutre,[SUP][5][/SUP] at this time the current interglacial ends, sending the Earth back into an ice age, assuming limited effects of anthropogenic global warming. Niagara Falls erodes away the remaining 20 miles to Lake Erie and ceases to exist.[SUP][6][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]100,000[/TD]
[TD]The hypergiant star VY Canis Majoris will have likely exploded in a hypernova.[SUP][7][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]250,000[/TD]
[TD]Lo'ihi, the youngest volcano in the Hawaiian-Emperor seamount chain, will rise above the surface of the ocean and become a new volcanic island.[SUP][8][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]500,000[/TD]
[TD]By this time Earth will have likely been impacted by a meteorite of roughly 1 km in diameter.[SUP][9][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]1 million[/TD]
[TD]Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight.[SUP][10][/SUP][SUP][11][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]1.4 million[/TD]
[TD]Gliese 710 passes within 1.1 light years of the Sun, potentially disturbing the Solar System's Oort cloud and increasing the likelihood of a comet impact in the inner Solar System.[SUP][12][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]10 million[/TD]
[TD]The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa.[SUP][13][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]11 million[/TD]
[TD]The moon Phobos collides with the surface of Mars.[SUP][14][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]50 million[/TD]
[TD]The Californian coast begins to be subducted into the Aleutian Trench[SUP][15][/SUP] Africa will have collided with Eurasia, closing the Mediterranean Basin and creating a mountain range similar to the Himalayas.[SUP][16][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]100 million[/TD]
[TD]By this time, the Earth will have likely been impacted by a meteorite comparable in size to that which triggered the K–T extinction 65 million years ago.[SUP][17][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]~240 million[/TD]
[TD]From its present position, the Solar System will have completed one full orbit of the Galactic center.[SUP][18][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]250 million[/TD]
[TD]All the continents on Earth fuse into a possiblenewsupercontinent.[SUP][19][/SUP][SUP][20][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]600 million[/TD]
[TD]As weathering of Earth's surfaces increases with the Sun's luminosity, carbon dioxide levels in its atmosphere decrease. By this time, they will fall to the point at which C3 photosynthesis is no longer possible. All plants which utilise C3 photosynthesis (~99 percent of species) will die.[SUP][21][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]~800 million[/TD]
[TD]Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible. All plant species die. Free oxygen eventually disappears from the atmosphere.[SUP][21][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]1 billion[/TD]
[TD]The Sun's luminosity increases by 10%, causing Earth's surface temperatures to reach an average of 47°C and the oceans to boil away.[SUP][22][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]1.5 billion[/TD]
[TD]The Sun's circumstellar habitable zone moves outwards as its increased luminosity causes carbon dioxide to increase Mars's atmosphere, raising its surface temperatures to ice age Earth conditions.[SUP][23][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]3.3 billion[/TD]
[TD]1% chance that Mercury's orbit may become so elongated as to collide with Venus, sending the inner Solar System into chaos and potentially leading to a planetary collision with Earth.[SUP][24][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFCC33"]
[TD]3.5 billion[/TD]
[TD]Surface conditions on Earth are comparable to those on Venus today.[SUP][25][/SUP][SUP]₩[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]3.6 billion[/TD]
[TD]Neptune's moon Triton falls through the planet's Roche limit, potentially disintegrating into a new planetary ring system.[SUP][26][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]5.4 billion[/TD]
[TD]The Sun becomes a red giant.[SUP][27][/SUP]Mercury, Venus and possibly Earth are destroyed.[SUP][28][/SUP] During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[SUP][29][/SUP][SUP][30][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]7 billion[/TD]
[TD]Collision between the Milky Way and Andromedagalaxies.[SUP][31][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]7.4 billion[/TD]
[TD]Sun becomes a white dwarf[SUP][32][/SUP][SUP][33][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10 billion[/TD]
[TD]Estimated lifespan of a globular cluster before its stars are ejected by gravitational interactions.[SUP][34][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]20 billion[/TD]
[TD]The end of the Universe in the Big Rip scenario.[SUP][35][/SUP] Observations of galaxy cluster speeds by the Chandra X-Ray Observatory suggest that this will not occur.[SUP][36][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]50 billion[/TD]
[TD]Assuming both survive the Sun's expansion, by this time the Earth and the Moon become tidelocked, with each showing only one face to the other.[SUP][37][/SUP][SUP][38][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]100 billion[/TD]
[TD]The Universe's expansion causes all evidence of the Big Bang to disappear beyond the practical observational limit, rendering cosmology impossible.[SUP][39][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]450 billion[/TD]
[TD]Median point by which the Local Group, the collection of ~47 galaxies to which the Milky Way belongs,[SUP][40][/SUP] will coalesce into a single large galaxy.[SUP][41][/SUP] [SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]12[/SUP] (1 trillion)[/TD]
[TD]Low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[SUP][41][/SUP][SUP], §IID.[/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]2×10[SUP]12[/SUP] (2 trillion)[/TD]
[TD]All galaxies outside the Local Supercluster are no longer detectable in any way, assuming that dark energy continues to make the Universe expand at an accelerating rate.[SUP][42][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]13[/SUP] (10 trillion) to 2×10[SUP]13[/SUP] (20 trillion)[/TD]
[TD]Lifetime of the longest-lived stars, low-mass red dwarfs.[SUP][41][/SUP][SUP] §IIA.[/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]3 x 10[SUP]13[/SUP] (30 trillion)[/TD]
[TD]Estimated time for the white dwarf Sun to undergo a close encounter with another stellar remnant in the local Solar neighborhood. Whenever two objects pass close to each other, the orbits of their planets can be disrupted and the planets can be ejected from orbit around their parent objects. Planets with closer orbits take longer to be ejected in this manner on average because a passing object must make a closer pass to the planet's primary to eject the planet.[SUP][43][/SUP][SUP][41][/SUP][SUP], §IIIF, Table I.[/SUP] [SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]14[/SUP] (100 trillion)[/TD]
[TD]High estimate for the time until star formation ends in galaxies.[SUP][41][/SUP][SUP], §IID.[/SUP] This marks the transition from the Stelliferous Era to the Degenerate Era;[SUP][44][/SUP] once star formation ends and the least massive red dwarfs exhaust their fuel, the only stellar-mass objects remaining are stellar remnants (white dwarfs, neutron stars and black holes.) Brown dwarfs also remain.[SUP][41][/SUP][SUP] §IIE.[/SUP] [SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]15[/SUP] (1 quadrillion)[/TD]
[TD]Estimated time until stellar close encounters detach all planets in the Solar System from their orbits.[SUP][41][/SUP][SUP], §IIIF, Table I.[/SUP] By this time, the Sun will have cooled to five degrees above absolute zero.[SUP][45][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]19[/SUP] to 10[SUP]20[/SUP][/TD]
[TD]Estimated time until brown dwarfs and stellar remnants are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy with lower-mass objects tending to gain energy. The lower-mass objects can gain enough energy in this manner through repeated encounters to be ejected from the galaxy. This process causes the galaxy to eject the majority of its brown dwarfs and stellar remnants.[SUP][41][/SUP][SUP], §IIIA;[/SUP][SUP][46][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]10[SUP]20[/SUP][/TD]
[TD]Estimated time until the Earth's orbit around the Sun decays via emission of gravitational radiation,[SUP][47][/SUP] if the Earth is neither first engulfed by the red giant Sun a few billion years from now[SUP][48][/SUP][SUP][49][/SUP] nor ejected from its orbit by a stellar encounter before then.[SUP][47][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]32[/SUP][/TD]
[TD]The smallest possible value for proton half-life consistent with experiment.[SUP][50][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]3×10[SUP]34[/SUP][/TD]
[TD]The estimated time for all nucleons in the observable Universe to decay, if the proton half-life takes its smallest possible value.[SUP][51][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]41[/SUP][/TD]
[TD]The largest possible value for the proton half-life, assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early Universe makes protons decay.[SUP][41][/SUP][SUP], §IVA.[/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]3×10[SUP]43[/SUP][/TD]
[TD]Estimated time for all nucleons in the observable Universe to decay, if the proton half-life takes the largest possible value, 10[SUP]41[/SUP] years, consistent with the conditions given above.[SUP][51][/SUP] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, begins.[SUP][44][/SUP][SUP][41][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]65[/SUP][/TD]
[TD]Assuming that protons do not decay, estimated time for rigid objects like rocks to rearrange their atoms and molecules via quantum tunnelling. On this timescale all matter is liquid.[SUP][47][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]2×10[SUP]66[/SUP][/TD]
[TD]The estimated time until a black hole with the mass of the Sun decays by the Hawking process.[SUP][52][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]1.7×10[SUP]106[/SUP][/TD]
[TD]Estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[SUP][52][/SUP] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the Universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state.[SUP][44][/SUP][SUP][41][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]10[SUP]1500[/SUP][/TD]
[TD]Assuming protons do not decay, the estimated time until all matter decays to iron-56.[SUP][47][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]
[TD]Low estimate for the time until all matter collapses into black holes, assuming no proton decay.[SUP][47][/SUP] Subsequent Black Hole Era and transition to the Dark Era are, on this timescale, instantaneous.[SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]
[TD]Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[SUP][53][/SUP] [SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]
[TD]Estimated time for random quantum fluctuations to generate a new Big Bang, according to Caroll and Chen.[SUP][54][/SUP][SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #DCD0FF"]
[TD]
[TD]High estimate for the time until all matter collapses into black holes, again assuming no proton decay.[SUP][47][/SUP][SUP]₤[/SUP][/TD]
[/TR]
[TR="bgcolor: #FFC0CB"]
[TD]
[TD]High estimate for the time for the Universe to reach its final energy state.[SUP][53][/SUP] [SUP]€[/SUP][/TD]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]
[TD]Scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing an isolated black hole of stellar mass.[SUP][55][/SUP] This time assumes a statistical model subject to Poincaré recurrence. A much simplified way of thinking about this time is that in a model in which history repeats itself arbitrarily many times due to properties of statistical mechanics, this is the time scale when it will first be somewhat similar (for a reasonable choice of "similar") to its current state again.[SUP]$[/SUP][/TD]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]
[TD]Scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing a black hole with the mass within the presently visible region of the Universe.[SUP][55][/SUP][SUP]$[/SUP][/TD]
[/TR]
[TR="bgcolor: #E0FFFF"]
[TD]
[TD]Scale of an estimated Poincaré recurrence time for the quantum state of a hypothetical box containing a black hole with the estimated mass of the entire Universe, observable or not, assuming Linde's chaotic inflationary model with an inflaton whose mass is 10[SUP]−6[/SUP] Planck masses.[SUP][55][/SUP][SUP]$[/SUP][/TD]
[/TR]
[/TABLE]
http://en.wikipedia.org/wiki/Timeline_of_the_far_future
Ssf